

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 9701/31

Paper 31 Practical Test October/November 2007

2 hours

Candidates answer on the Question Paper.

Additional Materials: As listed in the Instructions to Supervisors

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Give details of the practical session and laboratory where appropriate, in the boxes provided.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

You are advised to show all working in calculations.

Use of a Data Booklet is unnecessary.

Qualitative Analysis Notes are printed on pages 11 and 12.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

Session	
Laboratory	

For Examiner's Use				
1				
2				
Total				

This document consists of 12 printed pages and 1 Insert.

1 Read through question 1 before starting any practical work.

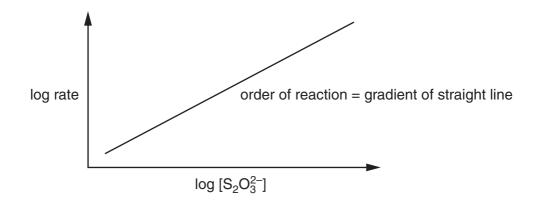
You are provided with the following reagents.

FA 1 containing 37.0 g dm $^{-3}$ of hydrated sodium thiosulphate, Na $_2$ S $_2$ O $_3$.5H $_2$ O **FA 2** 2.0 mol dm $^{-3}$ hydrochloric acid, HCl distilled water

Aqueous thiosulphate ions, $S_2O_3^{2-}$, decompose in the presence of hydrogen ions, H^+ .

$$S_2O_3^{2-}(aq) + 2H^+(aq) \rightarrow S(s) + SO_2(g) + H_2O(l)$$

The rate of reaction can be followed by observing the formation of a fixed amount of sulphur as a fine suspension of solid particles in the solution.


The rate of decomposition at a fixed temperature is affected by

- the concentration of thiosulphate ions, [S₂O₃²⁻];
- the concentration of hydrogen ions, [H⁺].

In a series of experiments where the concentration of a reagent is changed

- 1/time can be used as a measure of rate,
- the volume of the reagent used can be taken as a measure of its concentration, providing the total volume of the mixture is kept constant in each experiment.

The order of reaction with respect to thiosulphate ions can be obtained by plotting a graph of log rate against log $[S_2O_3^{2-}]$.

9701/31/O/N/07

© UCLES 2007

(a) Method

Experiment 1

- Fill the burette labelled FA 1 with FA 1.
- Run 50.00 cm³ of FA 1 from the burette into a 250 cm³ beaker.
- Measure 5 cm³ of FA 2 in a measuring cylinder.
- Tip the acid **FA 2** from the measuring cylinder into the beaker and **immediately** start a stop-clock or note the start time on a clock with a second hand.
- Swirl the beaker to mix the reagents and place the beaker over the printing on the insert provided.
- Observe the printing by looking down through the solution in the beaker.
- Stop the clock or note the time when the printing is **just** no longer visible.
- Record the time taken to the nearest second.

TI	ne.	time	tak	en	is		9
			LUIN	\sim	.0	 • •	_

Experiment 2

- Empty and rinse the beaker used in experiment 1. Carefully dry the beaker with a paper towel.
- Refill the burette **labelled FA 1** with **FA 1**.
- Fill the second burette, **labelled water**, with distilled water.
- Run 10.00 cm³ of **FA 1** and 40.00 cm³ of distilled water from the burettes into the 250 cm³ beaker.
- Measure 5 cm³ of FA 2 in a measuring cylinder.
- Tip the acid **FA 2** into the beaker, start the clock or note the time, mix the reagents and place over the printing as in experiment 1.
- Stop the clock or note the time when the printing is **just** no longer visible.
- Record the time taken to the nearest second.

The	time	taken	is	 S.
1110	uiiio	lancii	10	 v.

[2]

(b) In experiment 1 you will have obtained the time taken for a 'fast' reaction and in experiment 2 the time taken for a 'slow' reaction.

You are to repeat the experiment with further mixtures in which **only** the concentration of thiosulphate ions is varied.

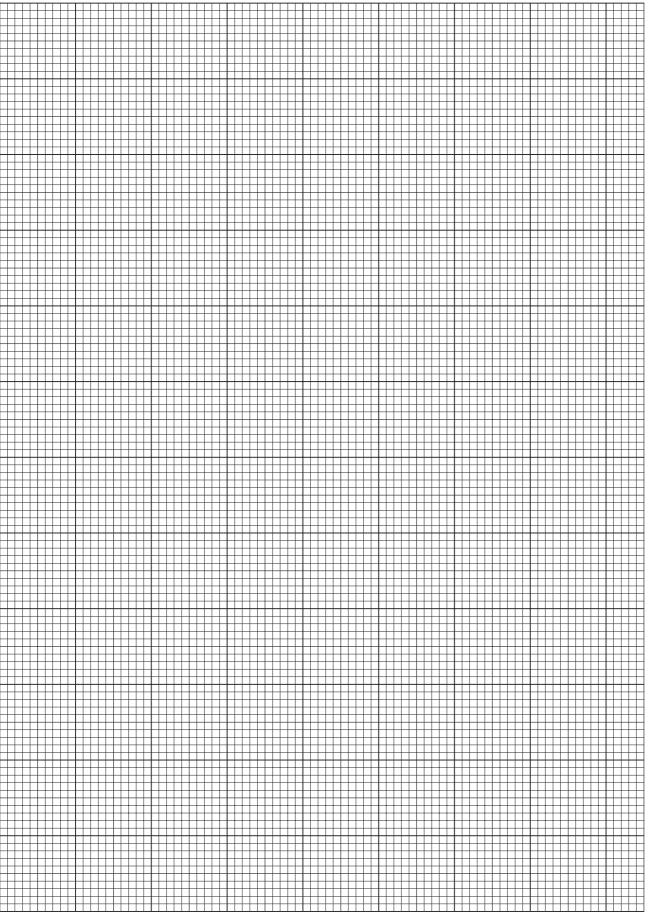
In selecting the mixtures to be used you should consider

- how many mixtures need to be used,
- what concentrations of thiosulphate ion should be used,
- what range these concentrations should cover,
- that only the concentration of thiosulphate ion must change.

Remember – you already have reaction times for two mixtures with different concentrations of thiosulphate ion.

In the space below prepare to record, in an appropriate form, the results of the experiments you will perform and the results of experiments 1 and 2.

Your recorded results should include calculated values to enable you to plot


log (1/time) against log (volume of FA 1).

Carry out the additional experiments and record your results.

i	
ii	
iii	
iv	
v	
vi	
vii	
viii	
ix	
X	
хi	

[11]

(c) Use the grid below to plot a graph of log (1/time) against log (volume of FA 1). Draw an appropriate straight line through the points plotted.

9701/31/O/N/07

(d)	Draw construction lines on your graph and obtain data from them to enable you to calculate the gradient of the graph.
	Calculate the gradient of the line drawn, which is the order of reaction with respect to thiosulphate ions.
	The reaction is order with respect to thiosulphate ions, $S_2O_3^{2-}$. [3]
(e)	The moment at which the printing is just obscured can be difficult to judge and will vary from person to person.
	Explain why this uncertainty for experiment 1 in section (a) will be less than the uncertainty for experiment 2 in section (a).
	Estimate a value (± seconds) for the uncertainty in each of experiments 1 and 2 and

	experiment 1	experiment 2
reaction time /s		
uncertainty /s	±	±
percentage uncertainty		

9701/31/O/N/07

express this uncertainty as a percentage of the time for the reaction.

[3]

(f) The experimental method can be modified to enable the rate of reaction with respect to hydrogen ions, H⁺, to be investigated.

You will perform two further experiments using the method for experiment 2 in section (a). You will keep the concentration of thiosulphate ions constant and vary the concentration of hydrogen ions.

First copy the reaction time from your results to experiment 2 in section (a) into the table below. Then complete the table below to show the volumes of **FA 1**, **FA 2**, and distilled water you will use in these two further experiments.

Carry out each experiment as before and record the time taken in each case.

	volume of FA 1 /cm ³	volume of FA 2 /cm ³	volume water /cm ³	reaction time /s
experiment 2 in section (a)	10.00	5	40.00	
experiment i				
experiment ii				

(g)	Use the experimental results from the three experiments to draw a conclusion as to how the rate of reaction is affected by changing the concentration of hydrogen ions.
	[1]

[Total: 25]

The	four solutions FA 3 , FA 4 , FA 5 and FA 6 each contain one of the following anions. nitrate, NO_3^- nitrite, NO_2^- sulphate, SO_4^{2-} sulphite, SO_3^{2-}
(a)	Use information from the Qualitative Analysis Notes on page 12 to answer the following questions.
	What single reagent could you use to identify the solution containing the nitrite ion?
	What reagents could you use to identify the sulphate and sulphite ions?
	and[1]
(b)	Use the reagents selected in (a) to test each of the four solutions.
	Record in the space below, the reagents used and the observations made.
	From your observations identify the solutions containing nitrite, sulphate and sulphite ions.
	Solution contains the nitrite ion.
	supporting evidence
	Solution contains the sulphate ion.
	supporting evidence
	Solution contains the sulphite ion.
	supporting evidence

© UCLES 2007 9701/31/O/N/07

2

(c) You are to perform the tests given in the table below with each of the solutions **FA 3**, **FA 4**, **FA 5** and **FA 6** to identify **three** of the cations present. One of these cations is the Ba²⁺ ion.

Record details of colour changes seen, the formation of any precipitate and the solubility of any such precipitate in an excess of the reagent added.

Where gases are released they should be identified by a test, described in the appropriate place in the table.

You should indicate clearly at what stage in a test a change occurs.

Marks are **not** given for chemical equations.

No additional tests should be attempted.

			obser	vations	
	test	FA 3	FA 4	FA 5	FA 6
(i)	To 1 cm depth of solution in a boiling-tube, add aqueous sodium hydroxide a little at a time until there is no further change.				
	If no precipitate forms, carefully warm the solution. CARE - heated solutions containing sodium hydroxide can be ejected from the boiling-tube.				
(ii)	To 1 cm depth of solution in a test-tube, add aqueous ammonia a little at a time until there is no further change.				
(iii)	To 1 cm depth of solution in a test-tube add 1 cm depth of dilute sulphuric acid.				
(iv)	To 1 cm depth of solution in a test-tube add 1 cm depth of aqueous sodium sulphite.				
	If a precipitate forms, add 2 cm depth of dilute hydrochloric acid.				

(d)	From your observations in (c) you should be able to identify the cation present in three of the solutions.
	Solution contains theion.
	supporting evidence
	Solution contains theion.
	supporting evidence
	Solution contains theion.
	supporting evidence
	[3]
(e)	Do not carry out this test.
	What other reagent could you use to confirm the presence of Ba^{2+} in one of the solutions?
	[1]
	[Total: 15]

Qualitative Analysis Notes

Key: [ppt. = precipitate]

1 Reactions of aqueous cations

ion	reaction with		
	NaOH(aq)	NH ₃ (aq)	
aluminium, Al ³⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess	
ammonium, NH ₄ ⁺ (aq)	ammonia produced on heating		
barium, Ba ²⁺ (aq)	no ppt. (if reagents are pure)	no ppt.	
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.	
chromium(III), Cr ³⁺ (aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess	
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution	
iron(II), Fe ²⁺ (aq)	green ppt. insoluble in excess	green ppt. insoluble in excess	
iron(III), Fe ³⁺ (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess	
lead(II), Pb ²⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess	
magnesium, Mg ²⁺ (aq)	white ppt. insoluble in excess	white ppt. insoluble in excess	
manganese(II), Mn ²⁺ (aq)	off-white ppt. insoluble in excess	off-white ppt. insoluble in excess	
zinc, Zn ²⁺ (aq)	white ppt. soluble in excess	white ppt. soluble in excess	

[Lead(II) ions can be distinguished from aluminium ions by the insolubility of lead(II) chloride.]

2 Reactions of anions

ion	reaction
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chromate(VI), CrO ₄ ²⁻ (aq)	yellow solution turns orange with H ⁺ (aq); gives yellow ppt. with Ba ²⁺ (aq); gives bright yellow ppt. with Pb ²⁺ (aq)
chloride, Cl ⁻ (aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq)); gives white ppt. with Pb ²⁺ (aq)
bromide, Br ⁻ (aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in NH ₃ (aq)); gives white ppt. with Pb ²⁺ (aq)
iodide, I ⁻ (aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq)); gives yellow ppt. with Pb ²⁺ (aq)
nitrate, NO ₃ (aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil
nitrite, NO ₂ (aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil; NO liberated by dilute acids (colourless $NO \rightarrow$ (pale) brown NO_2 in air)
sulphate, SO ₄ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) or with Pb ²⁺ (aq) (insoluble in excess dilute strong acid)
sulphite, SO ₃ ²⁻ (aq)	SO ₂ liberated with dilute acids; gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acid)

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)
chlorine, Cl ₂	bleaches damp litmus paper
hydrogen, H ₂	'pops' with a lighted splint
oxygen, O ₂	relights a glowing splint
sulphur dioxide, SO ₂	turns potassium dichromate(VI) (aq) from orange to green

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© UCLES 2007 9701/31/O/N/07